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Dielectric breakdown model for conductor-loaded and insulator-loaded composite materials
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In the present work we generalize the dielectric breakdown model to describe dielectric breakdown patterns
in both conductor-loaded and insulator-loaded composites. The present model is an extension of a previous one
@F. Peruaniet al., Phys. Rev. E67, 066121~2003!# presented by the authors to describe dielectric breakdown
patterns in conductor-loaded composites. Particles are distributed at random in a matrix with a variable con-
centrationp. The generalized model assigns different probabilitiesP( i ,k→ i 8,k8) to breakdown channel for-
mation according to particle characteristics. Dielectric breakdown patterns are characterized by their fractal
dimensionD and the parameters of the Weibull distribution. Studies are carried out as a function of the fraction
of inhomogeneities,p.
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I. INTRODUCTION

The dielectric breakdown phenomenon in solid mater
has been widely studied both theoretically and experim
tally due to its importance in the electrical industry. T
design of insulators bearing high electric strength is hig
desirable, and in the past years composite materials suc
resin matrix filled by fibers or strong particles have be
widely used with such purpose in many industrial applic
tions@1–4#. For example, high density polyethylene is one
the most widely used materials for the production of insu
tors, and composites containing carbon black and titan
dioxide have recently been tested experimentally@5# to de-
termine the influence of such particles on the dielectric pr
erties of the material. It has been shown that dielectric bre
down still produces branching structures, such as thos
homogeneous materials but with an extension of damage
a distribution of breakdown times dependent on the conc
tration and electrical characteristics of the filler. We note t
while both a low failure probability and a small damage a
desirable, our results suggest that this goal is not alw
attainable.

From the theoretical point of view, dielectric breakdow
in homogeneous materials has been described as a stoc
process producing fractal structures that are called elect
trees. The most widely used model is the dielectric bre
down model~DBM!, first introduced by Niemeyer, Pietron
ero, and Wiesmann@6#, which assumes that the dielectric
homogeneous, i.e., the electrical tree propagates in a die
tric medium without inhomogeneities. The main feature
the DBM is the dependence of the breakdown probability
the local electric field in the material, a fact that attempts
consider the basic mechanism underlying breakdown in
materials. Stochastic fluctuations produce breakdown ch
nels that damage the material increasing the local elec
field and eventually producing new channels. Since its in
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duction the DBM has been broadly studied to describe
perimental results@7–13#, though the physical origin of such
stochastic fluctuations is beyond the DBM and cannot
explained by it@14#.

The present paper addresses the problem of diele
breakdown in composite materials. While breakdown p
nomena in conductor-loaded dielectric have been studie
recent years from the standpoint of percolation the
@15,16#, insulator-loaded dielectric materials have receiv
much less attention. Theoretical efforts have concentrated
lattice models in an attempt to see whether the basic phys
mechanism of breakdown can be identified in these mat
als. Some efforts have focused on the breakdown of f
networks, while others have concentrated on dielectric bre
down in networks.

Our interest, however, is mainly focused on the study
fractal dielectric trees. Considering that percolation con
tions impose a limit to the breakdown processes we are
terested in the study of the breakdown phenomenon be
that limit, i.e., how the concentration of particles in the co
posite material modifies the characteristics of the dielec
trees. In a previous paper@17,18# we applied the DBM to
describe dielectric breakdown patterns in conductor-loa
composites and in this work we generalize the DBM to d
scribe dielectric breakdown patterns in insulator-loaded co
posites. Insulating particles are distributed at random in
resin matrix, and the dielectric breakdown propagates
cording to new rules to take into account electrical proper
and particle sizes. In this way we extend the DBM to ta
into account material inhomogeneities from the point of vie
of electrical properties.

The extension of the DBM model presented in this pa
also allows us to describe dielectric breakdown patterns
means of their fractal dimension and their Weibull distrib
tion parameters@19#.

In Sec. II we present a description of the DBM, and
Sec. III the model generalization is introduced and a br
description of the model for conductor-loaded composite
also included for comparison. Results are presented in
IV, and our conclusions are summarized in Sec. V.
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II. THE DIELECTRIC BREAKDOWN MODEL

In the DBM @6# the dielectric is represented by a recta
gular lattice where each site corresponds to a point in
dielectric. Microscopic examination of electrical tree grow
shows that branch extension occurs in increments typic
of 5 – 10mm, while the interelectrode gap is 1 – 2 m
@20,21#. This implies that a gap of 100 lattice units will rep
resent the experimental situation adequately, and accordi
1003100 lattices were employed in this work~the separation
between nodes then represents a distance of about 10mm).
The DBM assumes that the tree grows stepwise, startin
an electrode with electric potentialf50 and ending in the
counterelectrode wheref51. The discharge structure ha
zero internal resistance, i.e., at each point of the structure
electric potential isf50. The tree channel growth is gov
erned stochastically by the electric field. The probabilityP of
a tree channel growth at each site of the electrical tree ne
borhood is chosen to be proportional to a powerh of the
electric fieldE at such site (P}Eh). The electric fieldE can
be written fromf, and therefore

P~ i ,k→ i 8,k8!5
~f i 8,k8!

h

( ~f i 8,k8!
h

. ~1!

The sum in the denominator refers to all of the possi
growth sites (i 8,k8) adjacent to the electrical tree.

The electric field distribution is obtained by solving th
Laplace equation considering that the tree structure has
electric potential of the electrode (f50).

Breakdown patterns generated by this model have a f
tal structure that has broadly been dealt with in the literat
@7–13#. The fractal structure of the trees is highly depend
on the value of the exponenth and can be characterized b
their fractal dimensionD and the probability of dielectric
failure, R(t).

The fractal dimension is defined from the correlati
function C(r ), which is the quotient of theaveragenumber
of lattice sites that belong to the tree, divided by the to
number of lattice points that can be found within a circle
radiusr. The average is performed over the set of circles
radius r centered on every point of the electrical tree. T
scaling behavior ofC(r ) with r is given by the following
equation:

C~r !5COr D22, ~2!

whereD is the fractal dimension. For practical purposes,
can be considered measuring the extension of damage
duced in the material, at high values of D the damage
larger.

The propagation timet is measured as the number
channels incorporated into the tree~the incorporation of a
new channel represents a unit of time!.

The cumulative probability of failure,R(t), of a family of
trees generated by computer simulations satisfies a
parameter Weibull distribution@11,12,19#, such as those ob
served in experimental studies, given by
01612
-
e

ly

ly

in

he

h-

e

he

c-
e
t

l
f
f

ro-
is

o-

R~ t !512exp@2~ t/a!b#, ~3!

where a is the characteristic propagation time, i.e., if w
denote the gamma functionG, the mean time to failurem is
m5aG(111/b). a can be considered to show the degree
branching of the tree.b is a shape parameter, for instanc
when b51 we have the exponential distribution, whenb
53.602 we have a distribution close to a normal one, a
whenb is less~greater! than 3.602 the distribution has a lon
right ~left! tail. Also, by calling the variance of the propag
tion time to failures2, thens/m is a function ofb only.

III. THE COMBINED MODEL

In a previous paper@17# we extended the DBM to con
sider dielectric breakdown in conductor-loaded compos
materials. We represented these materials by a matrix wi
variable concentrationp of randomly distributed conducting
inhomogeneities. Inhomogeneity characteristics were in
duced assigning different probabilitiesP( i ,k→ i 8,k8) to
breakdown channel formation. The model was then sim
fied and a numerical study comparing both was perform
We refer the reader to Ref.@17# for details about the model
Here, we consider a variation of the simplified model to a
take into account dielectric breakdown in insulator-load
composite materials. To compare it with our present resu
in Sec. III A we briefly describe our previous simplified com
bined model with conducting particles~SCMC!. Then, in
Sec. III B, the simplified combined model with insulatin
particles~SCMI! is presented.

A. Conducting particles „SCMC…

In the DBM the probabilityP( i ,k→ i 8,k8) of the break-
down channel growth between two nodes is chosen to
proportional to a powerh of the electric field, according to
Eq. ~1!.

In our simplified model, SCMC,P( i ,k→ i 8,k8) is modi-
fied according to the following rules@17,18#

If ( i 8,k8) is a site of the polymeric matrix,

P~ i ,k→ i 8,k8!}~f i 8,k8!
h, ~4!

as in the DBM@see Eq.~1!# but we assume the simultaneou
and instantaneous incorporation of conducting partic
when they are reached by the electrical tree. Then these
corporations are not counted in the propagation timet, mea-
sured as the number of channels incorporated into the t
Thus, if in a step of the tree growth, sites (i 8,k8) exist adja-
cent to the structure and occupied by conducting partic
they are incorporated simultaneously and instantaneo
into the electrical tree.

The SCMC describes the dielectric breakdown pheno
enon in conducting-loaded materials~such as carbon black
filled polymers!, by considering particles with a diameter ju
slightly less than the length of the dielectric breakdow
channel~10 mm! @18# in reasonable agreement with the e
perimental results. In such case, the assumption of simu
neous and instantaneous incorporation of conducting
ticles to the tree becomes reasonable, since the pote
3-2
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DIELECTRIC BREAKDOWN MODEL FOR CONDUCTOR- . . . PHYSICAL REVIEW E 69, 016123 ~2004!
gradient between either two neighboring conducting partic
or a tree node and a neighboring conducting particle is v
high.

B. Insulating particles „SCMI …

In this case, we assume that the presence of an insula
particle in a given site prevents the breakdown of the ma
rial at that site, i.e., we assume that the filler permittivity« f
is much greater than polymer permittivity«p . Then, we
again modified the probabilityP( i ,k→ i 8,k8), according to
the following rules

If ( i 8,k8) is a site of the polymeric matrix,

P~ i ,k→ i 8,k8!}~f i 8,k8!
h, ~5a!

as in the DBM@see Eq.~1!#, but if ( i 8,k8) is occupied by an
insulating particle,then

P~ i ,k→ i 8,k8!50. ~5b!

According to Eq.~5!, sites (i 8,k8), which are occupied by an
insulating particle, are not incorporated into the electri
tree.

The SCMI attempts to describe the experimentally o
served effect of the inclusion of high-permittivity particles
polymer matrices. Such particles increase the resistanc
the materials excluding the electric breakdown path fr
them, a property that is well represented by the SCMI. T
SCMI also assumes a diameter particle slightly less than
dielectric breakdown channel.

IV. RESULTS

The SCMI was numerically explored simulating electric
trees and characterizing them by the fractal dimensionD and
the a andb parameters of the Weibull distribution@see Eq.
~3!#. Their dependencies on both the concentration of p
ticles p and the exponenth were studied. Trees were simu
lated on 1003100 lattices and sets of 100 trees were gen
ated for each value ofp andh.

Figure 1 shows three electrical trees generated with
ferent values ofp. When the filler fractionp is sufficiently
high, electrical trees cannot propagate across the matrix,
they never reach the counterelectrode. Therefore, a cri
concentration exists,p* , beyond which dielectric breakdow
does not occur. From our simulationsp* 50.4260.03 for
1003100 lattices. This value ofp* can also be derived from
percolation concepts. Considering a percolation problem
which the clusters are defined as the set of particles b
both first and second nearest neighbors, a critical va
;0.42 is obtained, instead of the value 0.59 that is obtai
considering only first nearest neighbors. Physically, the p
nomenon occurs when all possible growth sites for the
are occupied with insulating particles.

Below p* , the cumulative probability of failure follows a
Weibull distribution witha andb parameters depending o
p andh. Figure 2 shows both behaviors. In Fig. 3 we quot
the behavior for the SCMC for comparison.

Finally, in Fig. 4 we show the dependence of fractal
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mensionD on p and h for both models, the SCMI and th
SCMC.

V. CONCLUSIONS

The DBM produces fractal electrical trees that can be w
compared with those obtained in experiments. Our purp
here was to study the effect of the concentration of filler
composite materials on the fractal characteristics of the tr
The DBM was then modified assigning different probab
ties to the breakdown channel formation. Two cases w
considered: conducting and insulating particles in comp
son with the matrix, leading to the SCMC and the SCM
respectively. Insulating particles are distributed at rand
and have the effect of excluding the electric breakdown p
from them, a behavior that can be well described by
SCMI .

FIG. 1. Electrical trees grown in composite materials with
increasing fractionp of insulating particles.~a! p50 is an electrical
tree such as those simulated in Refs.@10#, ~b! p50.20 (p,p* ), ~c!
p50.42 (p5p* ). A tree that does not reach the counterelectrode
shown.
3-3
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FIG. 2. Dependence of Weibull distribution parameters~a! the
characteristic timea and ~b! the shape factorb, on the fraction of
insulating particles,p andh, calculated from a set of 100 electrica
trees by employing the SCMI.
01612
FIG. 4. Dependence of the fractal dimensionD on the fraction
of particlesp andh calculated from a set of 100 electrical trees
employing the SCMI~a! and the SCMC~b!.
FIG. 3. Dependence of Weibull distribution parameters~a! the characteristic timea and ~b! the shape factorb, on the fraction of
conducting particles,p andh, calculated from a set of 100 electrical trees by employing the SCMC.
3-4
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DIELECTRIC BREAKDOWN MODEL FOR CONDUCTOR- . . . PHYSICAL REVIEW E 69, 016123 ~2004!
A numerical study comparing both the SCMC and t
SCMI was performed. Electrical trees are characterized
their fractal dimensionD and thea andb parameters of the
Weibull distribution. Their dependencies on both the conc
tration of particlesp and the exponenth were studied.

In the SCMI a critical concentration exists (p* 50.42
60.03) beyond which dielectric breakdown does not occ
This phenomenon happens when all possible growth sites
the tree are occupied with insulator particles. Belowp* the
propagation time distribution follows a Weibull distributio
with a and b parameters depending onp and h. Also, the
fractal dimension of electrical trees,D, depends onp andh,
belowp* . Qualitatively, similar behaviors ofa, b, andD as
a function ofp are obtained for all values ofh, excepth
51.

The fractal dimensionD behaves monotonically withp
~see Fig. 4! when h.1. Whereas forh51, D presents a
minimum. Electrical trees simulated withh51 are charac-
terized by a higher degree of branching compared with th
simulated with greater values ofh. Insulating particles basi
cally act as obstacles inhibiting possible paths for branch
and thereforeD decreases in the interval 0<p,0.35. While
the branching capacity of trees withh51 is enough to find a
path to reach the counterelectrode,D will decrease only ac-
counting for the reduction of growing paths. In the interv
0.35<p,p* the reduction in the number of breakdow
channels is so strong that the electrical trees have to incr
their degree of branching to reach the counterelectrode anD
increases. Accordingly,a also exhibits a nonmonotonic be
havior for h51 diminishing even below its value forp
50.

On the other hand, insulating particles in electrical tre
simulated withh.1 have the effect of increasing the degr
of branching in the whole interval 0<p<p* , because di-
electric trees themselves have a low capacity for branch
Breakdown structures now must explore more alterna
paths asp is increased and, consequently,a increases withp
for h.1.

As p approachesp* (p→p*) the values ofa seem to
merge together forh.1. a roughly represents the branchin
degree of the trees, which diminishes ash increases. One
could speculate then about the existence of a common v
for a in p5p* ~and forh@1) because the number of po
sible growing paths for the tree decrease strongly.

The main difference in the breakdown process betwee
polymer matrix with conducting or insulating filler is in th
behavior of the characteristic propagation timea. While in
the SCMC a reduction ina is observed when the fraction o
conducting particles,p, is increased@Fig. 3~a!#, in the SCMI
a increases~for h.1) with the fraction of insulating par
ticles,p @Fig. 2~a!#.

The dependence ofb which is the shape parameter of th
Weibull distribution, onp and h is qualitatively similar for
both the SCMI and the SCMC. Asp increases, the distribu
tion becomes broad approaching an exponential distribu
01612
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(b;1). In the SCMI this behavior indicates a large propo
tion of breakdowns at short times. It is important to note th
although the inclusion of insulator filler in the composi
increases the average failure time anda ~which is a desirable
property!, it also produces a strong reduction ofb and a
broad distribution of failure time that in practical applic
tions means a loss in the reliability of the material.

In the SCMC the reduction ofb is accompanied by a
reduction ofa and is a consequence of the instantane
incorporation of the conducting particles to the tree.

For practical purposes the extension of damage also
an economic impact, and in this sense, the variation oD
must also be considered.

Finally, it is interesting to note that in the SCMC and d
to the presence of conducting particles, electrical dam
must be distinguished from mechanical damage. For
ample, the reduction ofa with the increase ofp indicates
that the material rapidly becomes a conductor but in fac
also shows that the number of breakdown channels is v
small. Since the conducting particles are incorporated ins
taneously to the tree, they are not included in the calcula
of the propagation time; note, however, thatD measures the
extension of the structure including conducting particl
Since the direction of the electrical tree propagation
known, such property can be useful to detect small mech
cal failures in the material.

The model presented in this paper mimics quite well fi
ers with very high permittivity and mechanical strength,
combination that makes it extremely difficult for them to b
penetrated by an electrical tree. Treeing breakdowns th
fore avoid the fillers whenever possible, even to the exten
adopting extremely low field tortuous paths. Calculatio
show that for materials whose dielectric breakdown is
scribed byh values greater than one, the onset of tortuos
defines the smallestp value ('0.30) for effective breakdown
inhibition. This can be followed by looking either at the d
pendence ofh ~Fig. 4! on p or at the dependence ofa ~Fig.
2! on p.

In practical insulation systems the quality of the polyme
insulation interface will clearly assume a major importan
Poor binding or contributory mechanical stresses will ca
the interface to fail rapidly and hence facilitate the path
the breakdown around the filler particle thereby reducing
effectiveness.
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